

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Toluene Dioxygenase-Catalysed Synthesis of *cis*-Dihydrodiol Metabolites from 2-Substituted Naphthalene Substrates: Absolute Configurational and Conformational Assignments Based on Circular Dichroism and Optical Rotation Measurements

Marcin Kwit,^[a] Jacek Gawronski,^{*[a]} Derek R. Boyd,^{*[b]} Narain D. Sharma,^[b] Magdalena Kaik,^[b] Rory More O'Ferrall^[c] and Jaya S. Kudavalli^[c]

> [a] Department of Chemistry A. Mickiewicz University Grunwaldzka 6, 60 780 Poznan, Poland

[b] School of Chemistry and Chemical Engineering The Queen's University of Belfast Belfast BT9 5AG, UK

[c] School of Chemistry & Chemical Biology, UCD Dublin 4, Ireland

Table A. Spectroscopic data for dihydrodiol 1a-1e, 2a-2d, 3a-3e

Yield (0.09 g, 11.5%); m. p. 144-146 °C (lit.^a 146 °C); R_f 0.47 QН OH (EtOAc:hexane 1:1); ¹H NMR δ 1.82 (d, 1H, $J_{OH,2}$ = 7.5 Hz, OH), 2.53 (d, 1H, *J*_{OH.1} = 8.5 Hz, OH), 4.32-4.35 (m, 1H, 2-H), **1**a 4.65-4.69 (m, 1H, 1-H), 6.14 (dd, 1H, $J_{3,2} = 4.8$, $J_{3,4} = 9.6$ Hz, 3-H), 6.53 (d, 1H, $J_{4,3}$ = 9.6 Hz, 4-H), 6.99 (d, 1H, $J_{5,6}$ = 8.0 Hz, 5-H), 7.41 (dd, 1H, *J*_{6,8} = 1.5, *J*_{6,5} = 8.0 Hz, 6-H), 7.70 (d, $J_{8,6} = 1.5$ Hz, 8-H); ¹³C NMR 67.3, 70.8, 122.7, 128.8, 129.7, 130.8, 131.8, 138.2; IR v (cm⁻¹) 552, 832, 852, 932, 1012, 1042, 1100, 1190, 1267, 1333, 1477, 1636, 2361, 2853, 2923, 3326; $[\alpha]_D^{20}$ +240.1 (c = 0.5, MeOH), (lit.^a $[\alpha]_D^{20}$ +255); CD (MeCN) Δε (nm) 1.8 (274); 15.6 (218); 4.5 (198); UV (MeCN) ε (nm): 17700 (265); 39400 (200); HR MS (EI): calcd for [M-H]⁺ C₁₀H₈O₂Br: 238.9708; found: 238.9711.

Br

Yield (0.286 g, 13%); m. p. 138-140 °C; R_f 0.52 (EtOAc:hexane 1:1); ¹H NMR δ 1.89 (bs, 1H, OH), 2.71 (bs, 1H, OH), 4.30 (t, 1H, $J_{2,1} = J_{2,3} = 4.8$ Hz, 2-H), 4.69 (d, 1H, $J_{3,2} = 4.8$ Hz, 1-H), 6.06 (dd, 1H, $J_{3,2} = 4.8$, $J_{3,4} = 9.6$ Hz, 3-H), 6.53 (d, 1H, $J_{4,3} = 9.6$ Hz, 4-H), 6.93 (m, 1H, Aromatic), 7.02-7.11 (m, 1H, Aromatic), 7.32 (m, 1H, Aromatic); ¹³C NMR 67.0, 71.0, 114.9 (m), 127.3, 128.1, 128.8, 129.4, 139.6, 162.3, 164.3; IR v (cm⁻¹) 567, 827, 854, 1013, 1040, 1098, 1118, 1260, 1493, 1607, 2361, 3394; [α]_D²⁰ +255.8 (*c* = 1.0, MeOH); CD (MeCN) Δε (nm) +3.7 (268), +15.3 (213); UV (MeCN) ε (nm) 12600 (258), 34500 (209); HR MS (EI): calcd for C₁₀H₉FO₂: 180.0587; found: 180.0582.

Yield (0.700 g, 8%)^b; m. p. 108-110 °C (lit., ^c 108-110 °C); R_f 0.20 (EtOAc:hexane 1:1); ¹H NMR δ 3.84 (s, 3H, OMe), 4.36 (dd, 1H, $J_{2,3} = 3.4$, $J_{2,1} = 4.5$ Hz, 2-H), 4.70 (d, 1H, $J_{1,2} = 4.5$ Hz, 1-H), 5.99 (dd, 1H, $J_{3,2} = 3.4$, $J_{3,4}$ 10.0 Hz, 3-H), 6.54 (d, $J_{4,3} = 10.0$ Hz, 4-H), 6.80 (dd, 1H, $J_{6,8} = 2.7$, $J_{6,5} = 8.6$ Hz, 6-H), 7.06 (d, 1H, $J_{5,6} = 8.6$ Hz, 5-H), 7.18 (d, 1H, $J_{8,6} = 2.7$ Hz, 8-H); ¹³C NMR 55.7, 67.7, 71.2., 113.3, 113.6, 125.1, 125.9, 128.6, 129.5, 138.2, 160.3; IR v (cm⁻¹) 832, 940, 1036, 1220, 1498, 1575, 1607, 3560; $[\alpha]_D$ +276 (c = 1.0, MeOH). (lit.^c, $[\alpha]_D^{20}$ +247° in MeOH); CD (MeCN) $\Delta\epsilon$ (nm) +1.2 (300), +11.1 (219); UV (MeCN) ϵ (nm) 14560 (270), 33235 (210); HR MS (EI): calcd for $[M-H]^+$ C₁₁H₁₁O₃: 191.0708; found: 191.0699.

Yield (0.038 g, 76%)^d; m. p. 103-105 °C; R_f 0.49 (EtOAc:hexane 1:1); ¹H NMR δ 4.26 (m, 1H, $J_{2,1} = 5.0$ Hz, 2-H), 4,56 (d, 1H, $J_{1,2} = 5.0$ Hz, 1-H), 6.1 (dd, 1H, $J_{3,2} = 5.0$, $J_{3,4}$ 9.7 Hz, 3-H), 6.46 (d, 1H, $J_{4,3} = 9.7$ Hz, 4-H), 7.07 (d, 1H, $J_{5,6} = 8.2$ Hz, 5-H), 7.54 (d, 1H, $J_{6,5} = 8.2$ Hz, 6-H), 7.65 (s, 1H, 8-H); ¹³C NMR 14.2, 21.0, 66.3, 69.9, 111.2, 119.0, 128.2, 128.8, 130.4, 132, 137.7; IR v (cm⁻¹) 541, 594, 854, 1012, 1042, 1098, 1437, 1653, 2224, 2924, 3400; [α]_D²⁰+215.6 (c =1.3, MeOH); CD (MeCN) Δε (nm) +0.72 (299), +13.2 (219); UV (MeCN) ε (nm): 14650 (282), 26850 (222); HR MS (EI): calcd for C₁₁H₉NO₂: 187.0633; found: 187.0619.

Yield (0.08 g, 4.3%); m. p. 110-112 °C, (lit.^e 104-105 °C); R_f

0.43 (EtOAc:hexane 1:1); ¹H NMR δ 1.58 (bs, 1H, OH) 1.98 (bs, 1H, OH), 2.38 (s, 3H, Me), 4.32-4.35 (m, 1H, $J_{2,3} = 4.2$ Hz, 2-H) 4.65-4.69 (m, 1H, 1-H), 5.99 (dd, 1H, $J_{3,2} = 4.2$, $J_{3,4}$ 9.7 Hz, 3-H), 6.51 (d, 1H, $J_{4,3} = 9.7$ Hz, 4-H), 6.99 (d, 1H, $J_{6,5} = 7.6$ Hz, 6-H), 7.12 (d, 1H, $J_{5,6} = 7.6$ Hz, 5-H), 7.35 (s, 1H, 8-H); ¹³C NMR 21.4, 68.0, 70.8, 126.9, 127.5, 129.0, 129.1, 135.5, 138.5; IR v (cm⁻¹) 555, 694, 830, 1012, 1044, 1101, 1148, 1270, 1330, 1496, 2855, 2921, 3036, 3307; [α]_D²⁰ +235.9 (c = 1.1, MeOH); CD (MeCN) Δε (nm) 2.6 (265); 15.6 (221); UV (MeCN) ε (nm) 9800 (266); 21500 (218); HR MS (EI): calcd for [M-H]⁺ C₁₁H₁₁O₂: 175.0759; found: 175.0757.

Yield (0.09 g, 6.8%); m. p. 148-150 °C; R_f 0.48 (EtOAc:hexane 1:1); ¹H NMR (CD₃OD) δ 4.12 (t, 1H, $J_{2,1} = J_{2,3}$ 4.7 Hz, 2-H) 4.49 (d, 1H, $J_{1,2} = 4.7$, 1-H), 5.97 (dd, 1H, $J_{3,2} = 4.7$, $J_{3,4}$ 9.7 Hz, 3-H), 6.43 (d, 1H, $J_{4,3} = 9.7$ Hz, 4-H), 6.81 (d, 1H, $J_{5,6} = 7.8$ Hz, 5-H), 7.51 (dd, 1H, $J_{6,8} = 0.7$, $J_{6,5} = 7.8$ Hz, 6-H), 7.74 (d, 1H, $J_{8,6} = 0.7$ Hz, 8-H); ¹³C NMR (CD₃OD)

68.5, 71.8, 94.0, 129.5, 129.9, 131.2, 133.8, 137.2, 138.3, 140.8; IR ν (cm⁻¹) 550, 830, 848, 1047, 1109, 1636, 2362, 2924, 3420; $[α]_D^{20}$ +207.9 (c = 0.2, MeOH); CD (MeCN) Δε (nm) -0.5 (282); 15.4 (226), -0.6 (212); 8.8 (202); UV (MeCN) ε (nm) 14800 (272); 15900 (223); 17400 (203); HR MS (EI): calcd for C₁₀H₉IO₂: 287.9647; found: 287.9666.

Yield (0.13 g, 16.5%); m. p. 116-120°C; R_f 0.44 (EtOAc:hexane 1:1); ¹H NMR δ 1.99 (bs, 1H, OH), 2.42 (bs, 1H, OH), 4,35-4.38 (m, 1H, $J_{2,3}$ = 4.4 Hz, 2-H), 4.63-4.65 (m, 1H, 1-H), 6.11 (dd, 1H, *J*_{3,2} = 4.4, *J*_{3,4} = 9.6 Hz, 3-H), 6.50 (d, 1H, J_{4,3} = 9.6 Hz, 4-H), 7.22-7.29 (m, 2H, 5-H and 6-H), 7.41 (d, 1H, $J_{8.6} = 1.1$ Hz, 8-H); ¹³C NMR 71.1, 74.0, 126.0, 131.7, 133.0, 133.5, 134.3, 134.9, 138.1, 138.9; IR v (cm⁻¹) 668, 744, 785, 814, 866, 1035, 1083, 1190, 1266, 1358, 1387, 1576, 1627, 2342, 2361, 2918, 3272; $[\alpha]_D^{20}$ +140.8 (c = 0.4, MeOH); CD (MeCN) Δε (nm); 4.1 (263); 8.4 (227); -2.4 (202); UV (MeCN) ε (nm): 6800 (265); 26700 (222); HR MS (EI): calcd for $[M-H]^+ C_{10}H_8O_2Br$: 238.9708; found: 238.9710. Yield (0.136 g, 6.1 %); m. p. 120-125 °C; R_f 0.51 (EtOAc:hexane 1:1); ¹H NMR δ 1.61 (bs, 1H, OH), 2.41 (bs, 1H, OH), 4.40-4.42 (m, 1H, $J_{2,3}$ = 3.8 Hz, 2-H), 4.65 (m, 1H, 1-H), 6.11 (dd, 1H, $J_{3,2} = 3.8$, $J_{3,4} = 9.6$ Hz, 3-H), 6.47 (d, $J_{4,3}$ = 9.6 Hz, 4-H), 6.85 (m, 1H, Aromatic), 6.98 (m, 1H, Aromatic), 7.45-7.48 (m, 1H, Aromatic); ¹³C NMR 68.3, 70.7, 114.1 (d); 115.0 (d) , 128.3, 129.8, 130.8, 134.3, 162.1, 164.3; IR v (cm⁻¹) 546, 673, 790, 819, 862, 943, 1014, 1043, 1097, 1255, 1333, 1408, 1492, 1582, 1610, 2361, 2670, 2859, 2926, 3040, 3306; $[\alpha]_D^{20}$ +202.0 (*c* = 1.2, MeOH); CD (MeCN) $\Delta \epsilon$ (nm) +2.81 (258), +13.2 (213); UV (MeCN) ϵ (nm) 12 320 (258), 33 000 (207); HR MS (EI): calcd for C₁₀H₉FO₂ 180.0587; found: 180.0586.

MeO <u>E</u> OH OH 2c

Yield (2.3 g, 24%); m. p. 125-127 °C, (lit.^c m. p. 109-111 °C); R_f 0.18 (EtOAc:hexane 1:1); ¹H NMR δ 1.67 (bs, 1H, OH), 2.30 (bs, 1H, OH), 3.82 (s, 3H, OMe), 4.39-4.42 (m, 1H, $J_{2,3}$ =

Yield (0.177 g, 14.5%); m. p. 132-134 °C; R_f 0.48 (EtOAc:hexane 1:1); ¹H NMR δ 1.89 (bs, 1H, OH), 2.65 (bs, 1H, OH), 4.34-4.36 (m, 1H, $J_{2,3}$ = 4.9 Hz, 2-H), 4.74-4.76 (m, 1H, 1-H), 6.27 (dd, 1H, $J_{3,4}$ = 9.7, $J_{3,2}$ = 4.9 Hz, 3-H), 6.59 (d, 1H, $J_{4,3}$ = 9.7 Hz, 4-H), 7.39 (d, 1H, $J_{8,6}$ = 1.7 Hz, 8-H), 7.59 (dd, 1H, $J_{6,8}$ = 1.7, $J_{6,5}$ = 8.0 Hz, 6-H), 7.73 (d, 1H, $J_{5,6}$ = 8.0 Hz, 5-H); ¹³C NMR 14.8, 21.6, 66.7, 70.7, 112.9, 119.0, 128.2, 129.2, 130.5, 132.8, 142.1; IR v (cm⁻¹) 683, 800, 827, 1008, 1039, 1097, 1257, 1398, 1489, 1634, 1636, 2230, 2361, 2923, 3382; [α]_D²⁰ +196.8 (*c* = 1.0, MeOH); CD (MeCN) Δε (nm) +5.48 (265), +4.51 (236), -3.06 (230), -3.41 (226), +3.44 (211); UV (MeCN) ε (nm): 73000 (265), 46800 (232), 46000 (226). HR MS (EI): calcd for C₁₁H₉NO₂ 187.0633; found: 187.0623.

2g

Yield (0.11 g, 8.3%), m. p. 138-140 °C; R_f 0.43 (EtOAc:hexane 1:1); ¹H NMR (CD₃OD) δ 4.15 (dd, 1H, $J_{2,3}$ = 4.3, $J_{2,1}$ = 4.8 Hz, 2-H), 4.46 (d, 1H, $J_{1,2}$ = 4.8 Hz, 1-H), 5.96 (dd, 1H, $J_{3,2}$ = 4.3, $J_{3,4}$ = 9.7 Hz, 3-H), 6.38 (d, $J_{4,3}$ = 9.7 Hz, 4-H), 7.15 (d, 1H, $J_{5,6}$ = 8.0 Hz, 5-H), 7.39 (d, $J_{8,6}$ = 1.7 Hz, 8-H), 7.48 (dd, 1H, $J_{6,8}$ = 1.7, $J_{6,5}$ = 8.0 Hz, 6-H); ¹³C NMR (CD₃OD) 68.5, 71.9, 94.1, 129.1, 130.6, 131.8, 136.4, 136.5, 138.0, 138.2; IR v (cm⁻¹) 528, 669, 696, 785, 806, 883, 1001, 1034, 1096, 1190, 1247, 1474, 1558, 1586, 2361, 2912, 3292; [α]_D²⁰ +121.2 (c = 1.1, MeOH); CD (MeCN) Δε (nm) -0.6 (322); 2.7 (274), 5.1 (238); -0.3 (220), -2.9 (208); 7.9 (199); UV (MeCN) ε (nm) 6000 (266); 27100 (232); HR MS (EI): calcd for C₁₀H₉IO₂ 287.9647; found: 287.9668. R_f 0.43 (EtOAc:hexane 1:1)^f; ¹H NMR δ 2.1 (bs, 1H, OH),

2.32 (bs, 1H, OH), 4.32-4.34 (m, 1H, $J_{2,3} = 4.7$ Hz, 2-H), 4.62-

4.64 (m, 1H, 1-H), 6.01 (dd, 1H, $J_{3,2} = 4.7$, $J_{3,4} = 8.7$ Hz, 3-H),

6.46 (d, 1H, $J_{4,3}$ = 8.7 Hz, 4-H), 6.93 (s, 1H, 8-H), 7.11 (d, 1H,

 $J_{5.6} = 7.7$ Hz, 5-H), 7.38 (d, $J_{6.5} = 7.7$ Hz, 6-H).

Yield (0.11 g, 14%); m. p.152-154 °C; R_f 0.72 (EtOAc:hexane 1:1); ¹H NMR δ 1.67 (bs, 1H, OH), 2.57 (bs, 1H, OH), 4.42 (d, 1H, $J_{2,1} = 5.0$ Hz, 2-H), 4.88 (d, 1H, $J_{1,2} = 5.0$ Hz, 1-H), 6.92 (s, 1H, 4-H), 7.07 (d, 1H, $J_{8,7} = 7.2$ Hz, 8-H), 7.28-7.34 (m, 2H, 6-H and 7-H), 7.56 (d, 1H, $J_{5,6} = 7.2$ Hz, 5-H); ¹³C NMR 30.3, 72.1, 74.3, 124.8, 126.8, 127.3, 129.1, 129.2, 131.7, 134.5; IR v (cm⁻¹) 558, 599, 697, 757, 790, 879, 1020, 1050, 1093, 1120, 1213, 1274, 1324, 1420, 1483, 1624, 2342, 2361, 2926, 3324; $[\alpha]_D^{20}$ -156.2 (*c* = 1.0, MeOH); CD (MeCN) Δε (nm) 0.3 (308); -1.0 (277); -14.4 (225); -14.6 (207); UV (MeCN) ε (nm): 11800 (277); 19900 (220); HR MS (EI): calcd for [M-H]⁺ C₁₀H₈O₂Br: 238.9708; found: 238.9705.

Yield (0.258 g, 11.7%); m. p. 168-169 °C; R_f 0.75 (EtOAc:hexane 1:1); ¹H NMR δ 1.58 (bs, 1H, OH), 2.60 (bs, 1H, OH), 4.46 (m, 1H, $J_{2,1} = 5.4$ Hz, 2-H), 4.90 (d, 1H, $J_{1,2} = 5.4$ Hz, 1-H), 6.18 (d, 1H, $J_{4,F} = 11.4$ Hz, 4-H), 7.09-7.11 (m, 1H, Aromatic), 7.26-7.29 (m, 2H, Aromatic), 7.53-7.56 (m, 1H, Aromatic); ¹³C NMR 68.3 (d), 71.9, 107.6 (d), 127.0 (d), 128.3, 129.0, 130.0, 133.9, 159.6, 161.7; IR v (cm⁻¹) 531, 641, 705, 754, 852, 885, 963, 1052, 1099, 1142, 1216, 1314, 1428, 1455, 1485, 1678, 2361, 2859, 2923, 3071, 3339; [α]_D²⁰ -188.1 (c = 0.8, MeOH); CD (MeCN) Δε (nm) -4.14 (257), -10.28 (205); UV (MeCN) ε (nm) 17720 (226), 34900 (221), 39400 (202); HR MS (EI): calcd for C₁₀H₉FO₂: 180.0587; found: 180.0585.

Yield (1.36 g, 14%); m. p. 155-157 °C, (lit.^c m. p. 154-156 °C); R_f 0.24 (EtOAc:hexane 1:1); ¹H NMR δ 1.69 (bs, 1H, OH), 2.58 (bs, 1H, OH), 3.77 (s, 3H, OMe), 4.34 (d, 1H, $J_{2,1} =$ 4.8 Hz, 2-H), 4.78 (d, 1H, $J_{1,2} =$ 4.8 Hz, 1-H), 5.57 (s, 1H, 4-H), 7.05 (d, 1H, $J_{8,7} =$ 7.5 Hz, 8-H), 7.17 (m, 1H, 6-H), 7.23 (m, 1H, 7-H), 7.48 (d, 1H, $J_{5,6} =$ 7.5 Hz, 5-H); ¹³C NMR 55.6, 70.3, 71.3, 97.3, 125.6, 125.9, 127.3, 128.7, 132.1, 132.8, 156.9; IR v (cm⁻¹) 538, 668, 707, 759, 822, 884, 948, 1030, 1115, 1167, 1194, 1639, 2342, 2361, 2930, 3368; $[\alpha]_D^{20}$ -183.0 (*c* = 1.1, MeOH) (lit.^c $[\alpha]_D^{20}$ -225); CD (MeCN) Δε (nm) -2.2 (292); -7.5 (231); -8.1 (205); UV (MeCN) ε (nm): 12200 (270); 20100 (216); HR MS (ES⁻): calcd for [M-H₂O -H]⁻: C₁₁H₉O₂ 173.0603; found: 173.0604.

Yield (0.088 g, 7.2%); m. p. 161-162°C; R_f 0.69 (EtOAc:hexane 1:1); ¹H NMR δ 2.47 (bs, 1H, OH), 2.59 (bs, 1H, OH), 4.52-4.56 (m, 1H, 2-H), 4.77-4.79 (m, 1H, 1-H), 7.25 (m, 1H, Aromatic), 7.28 (d, $J_{4,2} = 1.5$ Hz, 4-H), 7.38 (m, 1H, Aromatic), 7.46 (m, 1H, Aromatic), 7.58 (d, 1H, $J_{5,6} = 7.4$ Hz, 5-H); ¹³C NMR (CD₃OD) 69.0, 71.5, 114.5, 120.0, 128.5, 130.0, 131.3, 132.5, 139.3, 143.9; IR v (cm⁻¹) 536, 597, 704, 769, 805, 916, 949, 1050, 1106, 1140, 1290, 1332, 1416, 1453, 1572, 1626, 2211, 2363, 2663, 2869, 2919, 3234; [α]_D²⁰ -114.7 (c = 1.1, MeOH); CD (MeCN) Δε (nm) -7.32 (222), -11.14 (203); UV (MeCN) ε (nm) 18200 (290), 31600 (224), 28400 (204), HR MS (EI): calcd for C₁₁H₉NO₂ 187.0633; found: 187.0622.

Yield (0.15 g, 8%); m. p. 120-121 °C, (lit.^d m. p. 115-116 °C); R_f 0.46 (EtOAc:hexane 1:1); ¹H NMR δ 1.59 (bs, 1H, OH), 1.95 (s, 3H, Me), 2.46 (bs, 1H, OH), 4.02 (d, 1H, $J_{2,1} = 4.5$ Hz, 2-H), 4.64 (d, 1H, $J_{1,2} = 4.5$ Hz, 1-H), 6.21 (s, 1H, 4-H), 6.95 (d, 1H, $J_{8,7} = 8.6$ Hz, 8-H), 7.26-7.34 (m, 2H, 6-H and 7-H), 7.45 (d, 1H, $J_{5,6} = 8.6$ Hz, 5-H); ¹³C NMR 19.6, 70.1, 70.5, 123.3, 124.9, 125.7, 126.4, 127.3, 131.3 133.5, 136.2; IR v (cm⁻¹) 566, 704, 757, 802, 888, 952, 1007, 1030, 1096, 1111,

1279, 1446, 1653, 2361, 2917, 2967, 3024, 3368; $[\alpha]_{D}^{20}$ -192.4 (c = 0.7, MeOH); CD (MeCN) $\Delta \varepsilon$ (nm) -2.7 (260); -14.0 (213); UV (MeCN) ε (nm): 10000 (265); 20300 (219); 19800 (213); HR MS (EI): calcd for $[M-H]^+$ C₁₁H₁₁O₂: 175.0759; found: 175.0751. Yield (0.20 g, 15%); m. p. 146-148 °C; R_f 0.7 (EtOAc : hexane 1:1); ¹H NMR δ 2.36-2.39 (m, 2H, 2xOH), 4.35-4,37 (m, 1H, 2-H), 4.79-4.81 (m, 1H, 1-H), 6.97 (d, 1H, $J_{87} = 7.4$ Hz, 8-H), 7.19-7.27 (m, 2H, 6-H and 7-H), 7.47 (d, 1H, J_{56} = 7.4 Hz, 5-H); ¹³C NMR 71.1, 75.7, 101.1, 126.6, 127.8, 129.0, 129.5, 132.7, 135.2, 139.4; IR v (cm⁻¹) 596, 694, 750, 1031, 1047, 1095, 1125, 1287, 1325, 1457, 1616, 2361, 2918, 3252; $[\alpha]_{D}^{20}$ -126.7 (c = 0.9, MeOH); CD (MeCN) $\Delta \varepsilon$ (nm) +1.36 (307), -15.80 (235), +1.41 (221), -17.82 (209); UV (MeCN) ε (nm) 17300 (275), 40700 (221), 416 (210), 46500 (198); HR MS (EI): calcd for C₁₀H₉IO₂ 287.9647; found: 287.9658.

OH

3g

^a Reference 14; ^b Isolated using *S. yaniokuyae* B8/36; ^c Reference 15; ^d Not isolated from the isomeric mixture obtained when using *P. putida* UV4 but obtained by substitution of an I-atom in compound **1g**; ^e Reference 16.; ^f Isomer **2e** could not be separated from compound **1e**.

Figure A. Measured in acetonitrile solution CD (solid line) and UV (dashed line) spectra of 1g.

Figure B. Measured in acetonitrile solution CD (solid line) and UV (dashed line) spectra of 2g.

Figure C. Measured in acetonitrile solution CD (upper panel) and UV (lower panel) spectra of 3g.

					IVIZ			
		1a(P1)		1a(M1)		1a(<i>M</i>	(2)	
Energy ^a [Hartree]		-3111.209318 (-3109.593317) ^b		-3111.207817 (-3109.591921	7) ^b	-3111.20 (-3109.59)6615 1082) ^b	
$\Delta E [\text{kcal mol}^{-1}]^a$		$0.00 \\ (0.00)^{b}$		$0.94 \\ (0.88)^{b}$		1.70 (1.40) ^b		
Population [%] ^a		80 (76) ^b		16 (17) ^b		4 (10) ^b		
$\Delta G [\text{kcal mol}^{-1}]^{\text{a}}$		0.00 0.62				1.15		
Population [%] ^a		67		23		10		
$\mu \left[\mathrm{D} \right]^{\mathrm{a}}$		3.44		2.59		1.56		
$\alpha [^{o}]^{a}$		-153.9 (-155.0) ^b) ^b 161.1 $(160.2)^{b}$			66.8 (68.4) ^b		
β [°] ^a		-159.4 (-159.1) ^b	155.4 (156.6) ^b 162.6 (163.8			63.8) ^b		
γ [°] ^a		10.7 (11.7) ^b	-12.2 (-12.9) ^b -11.2 (-11			1.9) ^b		
[α]	D	+197		+174		+93		
calcd. ^c	578 nm	+261		+233		+110		
	546 nm	+302		+271		+125		
	436 nm	+575		+521		+216		
		$[\alpha]_{I}$	calcd. Bol	tzmann average	d			
		ΔE			Δ	G		
D	578 nm	546 nm	436 nm	D	575 nm	546 nm	436 nm	
+189 $(+186)^{b}$	+250 $(+246)^{b}$	+290 $(+284)^{b}$	+552 $(+541)^{b}$	+181	+239	+277	+527	

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level [c] – B3LYP/6-311++G(2D,2P)

Figure 1A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 1a, their relative energies and some structural parameters.

Figure 1B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1a**.

Figure 1C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1a**.

Figure 1D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1a**.

Figure 1E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **1a**.

Geometries were optimzed at B3LYP/6-311++G(D,P) level Calculated energies were scaled by the factors of: 0.936 (mPW1PW91/6-311++G(2D,2P)) 0.914 (B3LYP/6-311++G(2D,2P)) 0.996 (B2PLYP/6-311++G(2D,2P)) 1.008 (B2PLYP/CC-pVTZ) σ = 0.5 eV Figure 1F. Calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **1a**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

M1

M2

2.176 Å

	1h(<i>P</i> 1)	1	h(<i>P</i> ?)	1b(<i>M</i> 1)		1b(<i>M</i> 2)
[Hartree]	-636 935709	-63	5 933205	-636 9338	17 -6	<u>36 932420</u>
	-050.755707	1.57		-050.7550	1/ -(2.06
$mol^{-1}l^a$	0.00	1.57		1.17		2.00
tion [%] ^a	83	6		13		-
1G	0.00	0.76		0.93		1.51
mol^{-1}	0.00		0.70	0.70		1.01
tion [%] ^a	65	17		13		5
$[D]^{a}$	3.40	4.08		2.62		1.67
[°] ^a	-154.0	-160.1		162.1		67.6
[°] ^a	-158.9	-69.1		155.8		163.0
[°] ^a	10.8	11.2		-12.3		-11.3
D	+242	+315		+134		+10
575 nm	+349	+449 +526		+163		-24
546 nm	+410			+185	+185	
436 nm	+848	-	+1083			-149
	[α]	D calcd. Bolt	zmann avera	ged		
	ΔΕ			Δ	G	
578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
+337	+395	+809	+229	+323	+378	+768
	^a [Hartree] ΔE mol ⁻¹] ^a tion [%] ^a ΔG mol ⁻¹] ^a tion [%] ^a [D] ^a [°] ^a [°] ^a D 575 nm 546 nm 436 nm 578 nm +337	Ib(P1) a [Hartree] -636.935709 ΔE 0.00 mol ⁻¹] ^a 83 ΔG 0.00 mol ⁻¹] ^a 83 ΔG 0.00 mol ⁻¹] ^a 65 [D] ^a 3.40 [°] ^a -154.0 [°] ^a -158.9 [°] ^a 10.8 D +242 575 nm +349 546 nm +410 436 nm +848 [a] ΔE 578 nm 546 nm +337 +395	Ib(P1) 1 a [Hartree] -636.935709 -636 ΔE 0.00 mol ⁻¹] ^a ttion [%] ^a 83 ΔG 0.00 mol ⁻¹] ^a	Ib(P1)Ib(P2) a [Hartree]-636.935709-636.933205 ΔE 0.001.57mol ⁻¹] ^a	1b(P1)1b(P2)1b(M1) ^a [Hartree]-636.935709-636.933205-636.9338 ΔE 0.001.571.19mol ⁻¹] ^a 11ttion [%] ^a 83613 ΔG 0.000.760.93mol ⁻¹] ^a 11ttion [%] ^a 651713[D] ^a 3.404.082.62[°] ^a -154.0-160.1162.1[°] ^a -158.9-69.1155.8[°] ^a 10.811.2-12.3D+242+315+134575 nm+349+449+163546 nm+410+526+185436 nm+848+1083+312[α] _D calcd. Boltzmann averaged ΔE Δ 578 nm546 nm436 nmD578 nm+337+395+809+229+323	1b(P1)1b(P2)1b(M1) ^a [Hartree]-636.935709-636.933205-636.933817-6 ΔE 0.001.571.19mol ⁻¹] ^a

[a] - B3LYP/6-311++G(D,P)

[b] - B3LYP/6-311++G(2D,2P)

Figure 2A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **1b**, their relative energies and some structural parameters.

Figure 2B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1b**.

Figure 2C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1b**.

Figure 2D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1b**.

Figure 2E. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1b**.

Figure 2F. Calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **1b**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

485 Å

*M*1'

2.184 Å

*M*1

183

M2'

		1c(P1)		1c(P1')	1c(M1)	1c(M1	1')	1c(M2')
Energ [Hartre	y ^a ee]	-652.224551 (-650.887161	-65) ^b (-65	52.223911 50.886567) ^b	-652.222448 (-650.885170) ^b	-652.222 (-650.885	2420 5164) ^b	-652.221014 (-650.884162) ^b
⊿E [kcal mo	$[1^{-1}]^a$	$\begin{array}{c} 0.00 \\ (0.00)^{b} \end{array}$		0.40 (0.37) ^b	1.32 (1.25) ^b	1.34 (1.25)) ^b	2.22 (1.88) ^b
Population	n [%] ^a	59 (56) ^b		29 (30) ^b	6 (6) ^b			$\begin{pmatrix} 0 \\ (2)^{b} \end{pmatrix}$
ΔG [kcal mol ⁻¹] ^a		0.00		0.30 0.92 0.94		Ļ	1.43	
Population	n [%] ^a	48		29	10	9		4
μ[D]	a	1.33		3.95	3.61	4.59)	4.51
α [°] ^a	L	-153.3 (-154.5) ^b	(-155.0 -156.3) ^b	161.8 (160.9) ^b	161.3 (16	50.4) ^b	72.2 (72.4) ^b
β [°]²	l	-158.7 (-158.4) ^b	(-159.0 -158.8) ^b	156.0 (157.3) ^b	156.2 (15	57.3) ^b	163.2 (164.0) ^b
γ [°] ^a		10.3 (11.3) ^b	10	.3 (11.3/) ^b	-11.9 (-12.6) ^b	-12.1 (-1	2.7) ^b	-10.9 (-11.5) ^b
δ [°] i		-179.3 (-179.2) ^b	-0	0.2 (-0.2) ^b	179.1 (179.2) ^b	-0.3 (-0	.3) ^b	-0.8 (-0.8) ^b
[α]	D	+319		+189	+178	+221	[+118
calcd. ^c	575 nm	+476		+261	+227	+307	7	+151
	546 nm	+562		+305	+261	+358	3	+174
	436 nm	+1229		+611	+472	+711	l	+323
			ſ	$[\alpha]_{D}$ calcd. Bol	tzmann averaged			
		ΔE		_	2	ΔΟ	ī	
D		578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
+267	b	+389 $(+270)^{b}$	+457	+973	+251	+361	+424	+894

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 3A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 1c, their relative energies and some structural parameters.

Figure 3B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1c**.

Figure 3C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1c**.

Figure 3D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1c**.

Figure 3E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **1c**.

Figure 3F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol 1c. The rotational strenghts R were calculated at different levels of theory in both velocity and dipole length representations.

		<i>M</i> 1		M2			
		1d(P1)	1	ld(P2)	1d(<i>M</i> 1)		1d(<i>M</i> 2)
Energy	^a [Hartree]	-629.933082	-629	9.9309933	-629.931646	-6	29.930814
ΔE [kcal mol ⁻¹] ^{<i>a</i>}		0.00	1.31		0.90		1.42
Popula	tion [%] ^a	71	7		15		7
[kcal	$(\Delta G = 1)^{a}$	0.00	2.15		1.99		2.30
Popula	tion [%] ^a	97		-	3		-
μ	$[D]^a$	6.16	7.45		4.57		3.08
α	[^o] ^a	-153.5	-159.4		161.2		61.7
β	? [°] ^a	-159.6	-58.2		155.2		162.3
γ	[°] ^a	10.9		11.5	-12.4		-11.4
$[\alpha]$	D	+238		+310	+239		+138
calcd. ^b	575 nm	+312		+406	+334		+184
	546 nm	+361		+469	+390		+214
	436 nm	+678	+890		+780		+424
		$[\alpha]$	D calcd. Bolt	zmann avera	ged		
	2	ΔE			ΔG		
D	578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
+215	+302	+353	+714	+239	+343	+403	+832

[a] – B3LYP/6-311++G(D,P) [b] – B3LYP/6-311++G(2D,2P)

Figure 4A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 1d, their relative energies and some structural parameters.

Figure 4B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1d**.

Figure 4C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1d.

Figure 4D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1d.

Figure 4E. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1d.

Figure 4F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol 1d. The rotational strenghts R were calculated at different levels of theory in both velocity and dipole length representations.

P1

M2

			1e(P1)) 1e(M1)					
Energy ^a [Hartree]		-57 (-57	-576.994824 (-575.777828) ^b			-576.993771 (-575.776839) ^b			
$\Delta E [\mathrm{kcal} \mathrm{mol}^{-1}]^a$			$\begin{array}{c} 0.00 \\ (0.00)^{\mathrm{b}} \end{array}$			$0.66 \\ (0.62)^{b}$			
Population [%] ^a		76 (74) ^b			24 (26) ^b				
⊿G [kca	ıl mol ⁻¹] ^a		0.00			0.84			
Populat	ion [%] ^a		81			19			
μ[$D]^a$	2.53			2.96				
α	[°] ^a	-154.3 (-155.9) ^b			160.2 (159.2) ^b				
β	[°] ^a	-159.6 (-159.4) ^b			155.8 (157.0) ^b				
γ	$\gamma \left[\circ \right]^{a}$		10.8 (11.6) ^b			-12.2 (-12.8) ^b			
[α]	D	+276			+205				
calcd. ^c	575 nm	+385				+274			
	546 nm		+449		+318				
	436 nm		+903		+603				
		[6	$\alpha]_{\rm D}$ calcd. Boltz	zmann averag	ed				
Δ		Ε			Δ	G			
D	575 nm	546 nm	436 nm	D	575 nm	546 nm	436 nm		
+259 (+257) ^b	+358 (+356) ^b	+417 (+415) ^b	+831 (+825) ^b	+262	+364	+424	+846		

[a] – B3LYP/6-311++G(D,P) [b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 5A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 1e, their relative energies and some structural parameters.

Figure 5B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1e**.

Figure 5C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1e.

Figure 5D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1e.

Figure 5E. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1e**.

Figure 5F. Calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **1e**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

Λ	Л	1
1	11	

		1f(P1)		1f(M1)		1f(<i>M</i>)	2)	
Energy ^a	[Hartree]	-537.666903 (-537.547187) ^b	-537.665948 (-537.546346) ^b		⁵⁹⁴⁸ -537.664496 (-537.545253) ^b			
ΔE [kca]	$\lfloor \text{mol}^{-1} \rfloor^a$	$0.00 \\ (0.00)^{b}$		0.60 (0.53) ^b		(1.51) $(1.21)^{b}$		
Populati	ion [%] ^a	70 (66) ^b	25 (26) ^b			5 (8) ^b		
ΔG [kca	l mol ⁻¹] ^a	0.00		0.33		0.83		
Populati	ion [%] ^a	55		31		14		
μ []	D] ^a	2.58		2.96		3.00		
α[o] ^a	-154.2 (-155.6) ^b	-154.2 (-155.6) ^b 159.8 (158.6) ^b		-154.2 (-155.6) ^b 159.8 (158.6) ^b 74.9		74.9 (75.3) ^b	
β[°] ^a	-160.3 (-160.0) ^b	$155.4 (156.7)^{b}$ $162.6 (163.5)^{b}$			53.5) ^b		
γ[°] ^a	10.9 (11.9) ^b	$-12.2 (-12.9)^{b}$ $-11.2 (-11.8)^{b}$			1.8) ^b		
[α]	D	+290		+149		+7		
calcd. ^c	575 nm	+416		+182		-31		
	546 nm	+488		+207		-42		
	436 nm	+998		+355		-165		
		$[\alpha]_{I}$	calcd. Bol	tzmann averaged	l			
		ΔE			⊿	G		
D	575 nm	546 nm	436 nm	D	575 nm	546 nm	436 nm	
241 (231) ^b	335 (319) ^b	391 (372) ^b	779 (738) ^b	207	281	327	636	

[a] – B3LYP/6-311++G(D,P) [b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 6A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **1f**, their relative energies and some structural parameters.

Figure 6B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1f**.

Figure 6C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 1f.

Figure 6D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **1f**.

Figure 6E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **1f**.

Figure 6F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **1f**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

		2a(P1)		2a(M1)		2a(M	2)	
Energy ^a	[Hartree]	-3111.209039 (-3111.593150) ^b		-3111.20793 (-3111.59204	0 1) ^b	-3111.206572 (-3111.591051) ^b		
⊿E [kca	l mol ⁻¹] ^a	$0.00 \\ (0.00)^{b}$		$0.70 \\ (0.43)^{b}$		1.55 (1.32) ^b		
Populat	ion [%] ^a	73 (71) ^b		22 (28) ^b		5 (8) ^b		
⊿G [kca	l mol ⁻¹] ^a	0.00		0.43		0.83		
Populat	ion [%] ^a	58		28		14		
μ []	D] ^a	1.88		1.06		1.42		
α [o] ^a	-153.9 (-155.0) ^b		160.3 (159.5) ^b	71.4 (71.4) ^b		
β[[0] ^a	-159.8 (-159.4) ^b		155.1 (156.4) ^b	162.7 (163.6) ^b		
γ[o] ^a	10.9 (11.8) ^b		-12.3 (-12.9)) ^b	-11.3 (-12.0) ^b		
[α]	D	+134		+141		+50)	
calcd. ^c	575 nm	+203		+178		+39)	
	546 nm	+240		+205		+40)	
	436 nm	+519		+362		+13	;	
		$[\alpha]_{I}$	calcd. Bol	tzmann average	ed			
		ΔE			Δ	G		
D	575 nm	546 nm	436 nm	D	575 nm	546 nm	436 nm	
$^{+131}_{(+129)^{b}}$	$^{+189}_{(+185)^{b}}$	+222 (+217) ^b	+459 $(+445)^{b}$	+124	+173	+202	+404	

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 7A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **2a**, their relative energies and some structural parameters.

Figure 7B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2a**.

Figure 7C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 2a.

Figure 7C. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2a**.

Figure 7D. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **2a**.

σ = 0.5 eV

Figure 7F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **2a**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

M2

		2b(P1)	2	2b(<i>P</i> 2)	2b(M1)		2b(M2)
Energy	[Hartree]	-636.935109	-63	6.932523	-636.9343	53 -6	536.932974
[kcal	ΔE 0.00 [kcal mol ⁻¹] ^a			1.62			1.34
Popula	tion [%] ^a	62		4	28		6
[kcal	ΔG [kcal mol ⁻¹] ^a		1.01		0.25		0.64
Popula	tion [%] ^a	46		8	30		16
μ	$[\mathbf{D}]^{\mathrm{a}}$	1.86		3.22	1.13		1.46
α	[°] ^a	-153.9	-160.1		159.7		72.8
β	[°] ^a	-160.2	-64.5		155.2	155.2	
γ	$\gamma [^{o}]^{a}$ 10.9 11.4		11.4	-12.4 -1		-11.4	
[α]	D	+234		+295	+136		+14
calcd. ^b	578 nm	+334		+422	+167		-16
	546 nm	+392		+495	+191		-25
	436 nm	+798		+1015	+329		-121
		[α]	D calcd. Bolt	tzmann avera	nged		
		ΔE			Δ	G	
D	578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
+196	+270	+315	+620	+174	+235	+273	+528

[a] – B3LYP/6-311++G(D,P)

[b] - B3LYP/6-311++G(2D,2P)

Figure 8A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **2b**, their relative energies and some structural parameters.

Figure 8B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2b**.

Figure 8C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2b**.

Figure 8D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of $\mathbf{2b}$

Figure 8E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **2b**.

Figure 8F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **2b**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

		20	c(P1')	2c(P1)		2c(M1')	2	c(M1)		
Energ [Hartr	gy ^a ree]	-652.223062 (-650.885911) ^b		-652.222672 (-650.885408) ^b		-652.222869 (-650.885814)	-652 (-650	2.222642).885507) ^b		
⊿E [kcal m	$\Delta E = 0.00$ [kcal mol ⁻¹] ^{<i>a</i>} (0.00) ^b		0.00).00) ^b	(0.25) $(0.32)^{b}$		0.12 (0.06)	(0.26 0.25) ^b		
Populatio	on [%]	a (32 (32) ^b	21 (18) ^b		26 (29)		$21 (21)^{b}$		
⊿G [kcal m	ΔG 0.13 [kcal mol ⁻¹] ^a		0.13	0.42		0.00		0.15		
Populatio	n [%]	a	26	16		33		25		
μ[D] ^a		2.59	3.89		2.77		1.19		
α [°]	$\alpha [^{\circ}]^{a}$ -154.7 (-155.2) ^b		/ (-155.2) ^b	-154.4 (-155.7) ^b		158.2 (156.7) ^b	157.	5 (156.0) ^b		
β[°]	$\beta \left[\circ \right]^{a}$ -158		5 (-160.9) ^b	-161.4 (-161.4) ^b		155.1 (156.5) ^b	154.	7 (156.1) ^b		
γ [°]	a	10.9	$(11.6)^{b}$	10.9 (11.9) ^b		-12.2 (-12.8) ^b	-12.	1 (-12.8) ^b		
δ [°	a	0.5	$5(0.5)^{b}$	179.4 (179.4) ^b		$0.0(0.1)^{b}$	(0.1) ^b 179.8 (179			
[α]	D	-	+254	+167		+173		+148		
calcd. ^c	575	-	+374	+270		+216		+177		
	nm									
	546	-	+440	+322		+248		+201		
	nm 436 nm	-	+930	+735		+735 +		+428		+324
			[0	$a]_{D}$ calcd. Boltz	mann avera	aged				
		Δ	E			⊿0	Ĵ			
D		578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm		
+192 $(+193)^{t}$,	+270 $(+268)^{b}$	+315 (+313) ^b	+631 (+622) ^b	+187	+256	+298	+582		

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level [c] – B3LYP/6-311++G(2D,2P)

Figure 9A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 2c, their relative energies and some structural parameters.

Figure 9B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2c**.

Figure 9C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 2c.

Figure 9D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2c**.

Figure 9E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **2c**.

Figure 9F. Calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **2c**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

		2d(P1)	20	d(<i>P</i> 2)	2d(<i>M</i> 1)		2d(<i>M</i> 2)
Energy	^a [Hartree]	-629.	-	-629.			-629.
[kca	ΔE l mol ⁻¹] ^{<i>a</i>}	0.00 1.29		1.29 1.22		1.95	
Popul	ation [%] ^a	79		9	10		2
[kca	$\Delta G = 0.00 \qquad 0.79$		0.97		1.39		
Popul	ation [%] ^a	65		17	12		6
μ	$\iota \left[\mathrm{D} \right]^{\mathrm{a}}$	3.89		5.95	2.33		3.01
$\alpha [^{o}]^{a}$		-153.2	-159.2		162.7	63.7	
β [°] ^a		-158.6	-61.2		155.4	163.0	
	γ [^o] ^a	10.9		11.5	-12.5		-11.5
[α]	D	+192	-	+251	+168		+36
calcd. ^b	578 nm	+296	-	+375	+208		+3
	546 nm	+351	-	+442	+237		-5
	436 nm	+773	-	+952	+400		-124
		[α] _D calcd. Boltz	zmann avera	ged		
	Δ	Ε			ΔG		
D	578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
+192	+288	+341	+734	+190	+281	+331	+705

[a] – B3LYP/6-311++G(D,P) [b] – B3LYP/6-311++G(2D,2P)

Figure 10A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 2d, their relative energies and some structural parameters.

Figure 10B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 2d.

Figure 10C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2d**.

Figure 10D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2d**.

Figure 10E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of 2d.

Figure 10F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **2d**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

M2

		2e(P1)		2e(M1)		2e(M	2)	
Energy ^a	[Hartree]	-576.994393 (-575.777438) ^b		-576.993745 (-575.776892) ^b		-576.992281 (-575.775789) ^b		
ΔE [kca]	$ \text{mol}^{-1}]^{a}$	$\begin{array}{c} 0.00 \\ (0.00)^{\mathrm{b}} \end{array}$		$(0.41)^{b}$		1.32 (1.03) ^b		
Populati	opulation $[\%]^a$ 63 31 $(58)^b$ $(32)^b$		6 (10)	$(10)^{b}$				
⊿G [kca	l mol ⁻¹] ^a	0.00		1.42		0.32	2	
Populati	on [%] ^a	60		5		35		
μ[]	$D]^{a}$	2.94		3.50		1.42		
α[°] ^a	-154.6 (-155.9) ^b	$(9)^{b}$ 159.3 (157.8) ^b 78.7 (78.4)		8.4) ^b			
β[°] ^a	-160.5 (-160.3) ^b	² 155.2 (156.5) ^b 162.6 (162			53.5) ^b		
γ[°] ^a	10.9 (11.9) ^b	-12.3 (-12.9) ^b			-11.1 (-1	-11.1 (-11.8) ^b	
[α]	D	+225		+170		+39)	
calcd. ^c	575 nm	+330		+211		+14	Ļ	
	546 nm	+338		+241		+10)	
	436 nm	+813		+417		-65		
		$[\alpha]_{I}$	calcd. Bol	tzmann averaged				
		ΔE			Δ	G		
D	575 nm	546 nm	436 nm	D	575 nm	546 nm	436 nm	
+197 (+189) ^b	$^{+274}_{(+260)^{b}}$	+288 $(+274)^{b}$	$+638 (+598)^{b}$	+157	+213	+218	+486	

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level [c] – B3LYP/6-311++G(2D,2P)

Figure 11A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of 2e, their relative energies and some structural parameters.

Figure 11B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2e**.

Figure 11C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2e**.

Figure 11D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **2e**.

Figure 11E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of 2e.

Figure 11F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol 2e. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations.

М2

		3	a(P1)	3a(P3)		3a(M1)	3	a(M2)
Energ [Hartr	rgy ^a -3111.207868 tree] (-3111.591638) ^b		1.207868 .591638) ^b	-3111.207703 (-3111.591665) ^b		-3111.209816 (-3111.593782)	-311 (-311	1.209404 1.593715) ^b
∠ ∠E [kcal m	ΔE kcal mol ⁻¹] ^{<i>a</i>}		1.22 1.35) ^b	1.32 (1.33	1.32 0.00 (1.33 (0.00)		(0.26 0.04) ^b
Populatio	lation $[\%]^a$ 7 5 (4) ^b (5		5 (5) ^b		54 (47)		$34^{(44)^{b}}$	
⊿G [kcal m	$\Delta G = 1.04$		1.11	1.11 0.01			0.00	
Populatio	n [%] ^a		7	7		43		43
μ[D]	μ [D] ^a 3.78		3.78	1.97		2.77		1.19
$\alpha [^{o}]^{a}$ -158.1		(-157.0) ^b	75.2 (73.2		155.9 (156.7) ^b	160.	8 (162.2) ^b	
$\beta [\circ]^{a}$		-158.6	5 (-159.9) ^b	81.3 (75.2		161.3 (161.1) ^b	55.	5 (56.7) ^b
γ [°] ^a		11.5	5 (12.2) ^b	10.6 (11.2		-11.6 (-12.4) ^b	-10.	6 (-11.3) ^b
[α]	D		+9	+3		-126		-218
calcd. ^c	575		+25	+12		-184		-309
	nm							
	546		+33	+16		-216		-361
	nm 426		112	152		440		707
	nm	_	F112	+33		-440		-121
			[α] _D calcd. Boltzi	nann aver	aged		
		Δ	E	-		ے ا	F	
D	5	78 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
-141 (-154) ^b	(-202 -221) ^b	-236 (-258) ^b	-474 (-519) ^b	-147	-209	-245	-490

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 12A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **3a**, their relative energies and some structural parameters.

Figure 12B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 3a.

Figure 12C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3a**.

Figure 12D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3a**.

Figure 12E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **3a**.

Figure 12F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **3a**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

л	л	1	
/ 1	"		

M2

		31	b (P 1)	3b(P3)		3b (<i>M</i> 1)		3b(<i>M</i> 2)	
Energ [Hartr	gy ^a ee]	-636.932517		-636.9321	04	-636.934375	-6.	36.933614	
⊿E [kcal m	$\Delta E = 1.17$ al mol ⁻¹] ^a		1.17	1.42		0.00		0.48	
Population [%] ^a			8	6		60		26	
⊿G [kcal m	ΔG 0.99 [kcal mol ⁻¹] ^a).99	1.23		0.00		0.16	
Populatio	n [%] ^a		9	6		48		37	
μ[D]] ^a	3	3.80	1.87		2.59		1.03	
$\alpha [^{o}]^{a}$		-1	54.3	75.5		155.4		160.5	
β [°] ^a		-1	57.2	83.1		162.2		52.3	
γ [°] ^a			11.2	10.9		-11.5		-10.6	
[α]	D		-37	-49		-256		-342	
calcd. ^b	575 nm	-15		-43		-379		-494	
	546 nm		-11	-46	-46			-580	
	436 nm	59		-40		-941		-1190	
			[0	a] _D calcd. Boltzr	nann avera	ged			
ΔE ΔG						Ĵ			
D	5	78 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm	
-248		-360 -423		-872	-256	-369	-433	-889	

[a] – B3LYP/6-311++G(D,P) [b] – B3LYP/6-311++G(2D,2P)

Figure 13A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **3b**, their relative energies and some structural parameters.

Figure 13B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of 3b.

Figure 13C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3b**.

Figure 13D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3b**.

Figure 13E. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3b**.

Figure 13F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **3b**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

	3c(P1)		c(P1)	3c(P3)		3c(M1)		3c(M2)	
Energy ^a		-652	.224035	-652.226174		-652.22671	-65	-652.226018	
[Hartr	ee]	(-652.	.886741) ^b	(-652.889476) ^b		(-652.88953	32) (-65	(-652.889244) ^b	
ΔE			1.68	0.34		0.00		0.43	
[kcal m	$ol^{-1}]^{a}$	(1	.75) ^b	$(0.03)^{b}$		$(0.00)^{b}$		(0.18) ^b	
Populatio	n [%] ^a		2	27		48		23	
			(1) ^b	$(35)^{b}$		(37) ^b		(27) ^b	
⊿G			1.49	0.30		0.00		0.21	
[kcal m	ol ⁻¹] ^a								
Populatio	n [%] ^a		4	25		42		29	
μ [D] ^a			3.39	3.47		3.61		1.19	
$\alpha [^{o}]^{a}$		-155.7	' (-154.1) ^b	774.9 (72.9) ^b		156.8 (157.)	7) ^b 161	.1 (162.5) ^b	
β [°] ^a		-159.7	' (-162.4) ^b	90.7 (88.2) ^b		165.4 (165.	165.4 (165.1) ^b 53.4 (
γ [°] ^a		12.5	$(13.4)^{b}$	12.1 (12.7) ^b		-12.8 (-13.6	6) ^b -11.6 (-12.2)		
$\delta \left[^{\mathrm{o}} ight] ^{\mathrm{a}}$		1.1	$(0.6)^{b}$	3.4 (3.1) ^b	$0.8(1.0)^{b}$	0	.5 (0.3) ^b	
[α]	D		-15	-42		-179		-309	
calcd. ^c	575	-5 +7		-43		-257		-438	
	nm								
	546		+14	-48		-302		-513	
	nm								
	436		-111	-57		-627 -1049		-1049	
nm									
			[0	$\alpha]_{D}$ calcd. Boltz	zmann aver	aged			
		Δ	Ε				ΔG		
D		578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm	
-169	69 -236 -27		-276	-555	-176	-245	-287	-577	

[a] - B3LYP/6-311++G(D,P)

 $(-228)^{b}$

 $(-164)^{b}$

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

 $(-267)^{b}$

(-534)^b

[c] - B3LYP/6-311++G(2D,2P)

Figure 14A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **3c**, their relative energies and some structural parameters.

Figure 14B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3c**.

Figure 14C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3c**.

Figure 14D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3c**.

Figure 14E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **3c**.

Figure 14F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **3c**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

		3d(P1)		3d(P2)	3d(<i>P</i> 3)	3d(<i>M</i>	1)	3d(M2)
Energ [Hartre	Energy ^a -629.932034 [Hartree]		4 -6	29.931226	-629.932146	-629.933	3738	-629.933760
ΔE [kcal mol ⁻¹] ^a		1.08		1.59	1.01	0.01		0.00
Population	n [%] ^a	6		3	7	42		42
⊿G [kcal mo	ol ⁻¹] ^a	1.11		1.37	0.94 0.27		,	0.00
Population	n [%] ^a	7		5	10	30	30	
μ [D]	a	6.84		7.60	4.27	5.41		3.44
α [°]	a	-158.7		-67.5	74.5	154.7		160.8
β [°] ^a		-157.8		-164.5	73.8	162.4	4	-49.9
γ [°]'	1	11.8		11.4	11.6	-11.3	3	-10.7
$[\alpha]$ calcd. ^b	D	-134		-25	-158	-81		-143
	575 nm	-212		-44	-249	-93		-174
	546 nm	-252		-53	-296	-104	Ļ	-198
436 nm		-557		-125	-661	-146)	-329
$\left[\alpha\right]_{D}$ calcd. Boltzmann averaged								
		ΔE			-	⊿0	Ĵ	
D		578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm
-114		-144	-164	-283	-119	-153	-176	-313

[a] – B3LYP/6-311++G(D,P)

[b] - B3LYP/6-311++G(2D,2P)

Figure 15A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **3d**, their relative energies and some structural parameters.

Figure 15B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3d**.

Figure 15C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3d**.

Figure 15D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3d**.

Figure 15E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **3d**.

Figure 15F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **3d**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.

		3e	(P 1)	3e(P2)		3e(<i>M</i> 1)	3	e(M2)	
Energy ^a -576.995903 [Hartree] (-576.779043) ^b		995903 779043) ^b	-576.994320 (-576.77802) ^b		-576.996771 (-576.780009)	-576.993165 (-576.776571			
$\Delta E = 0.54$ [kcal mol ⁻¹] ^a (0.61)		0.54 .61) ^b	1.54 (1.38) ^b		0.00 (0.00) ^b	(2	2.26 2.16) ^b		
Population [%] ^a		27 24) ^b	5 (7) ^b		68 (69) ^b		$\begin{pmatrix} 0 \\ (0)^{b} \end{pmatrix}$		
⊿G [kcal m	$\Delta G = 0.32 = 0.$		0.75		0.00		1.64		
Populatio	n [%] ^a		30	14		52		3	
μ[D]] ^a	2	2.40	2.30		2.51	2.51 2.85		
$\alpha [^{\circ}]^{a}$		-159.7	$(-158.4)^{b}$	-76.8 (-77.6) ^b		155.7 (156.7) ^b	161.2	2 (163.0) ^b	
$\beta [\circ]^a$		-153.4	(-154.7) ^b	-159.4 (-160.6) ^b		164.9 (164.6) ^b	52.5	5 (58.8) ^b	
$\gamma [^{\circ}]^{a}$		11.9	(12.7) ^b	$10.8 (11.5)^{b}$		-12.0 (-12.7) ^b	-12.1	l (-12.7) ^b	
[α]	D		+5	+91		-223		-308	
calcd. ^c	575	+44		+175		-327 -439		-439	
	nm								
546		+58		+212		-384		-515	
	nm								
	436	+	207	+530		-800	-1052		
	nm		-						
$[\alpha]_{D}$ calcd. Boltzmann averaged									
		ΔI	Ŧ			ΔC	Ĵ		
D	4	578 nm	546 nm	436 nm	D	578 nm	546 nm	436 nm	
-146 (-146) ^b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-111	-145	-168	-311			

[a] - B3LYP/6-311++G(D,P)

[b] – in parentheses results for geometries optimized at B2PLYP/6-311++G(D,P) level

[c] - B3LYP/6-311++G(2D,2P)

Figure 16A. Calculated at B3LYP/6-311++G(D,P) level structures of individual conformers of **3e**, their relative energies and some structural parameters.

Figure 16B. Calculated at TDDFT/mPW1PW91/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3e**.

Figure 16C. Calculated at TDDFT/B3LYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3e**.

Figure 16D. Calculated at TDDFT/B2PLYP/6-311++G(2D,2P) level CD and UV spectra for individual conformers of **3e**.

Figure 16E. Calculated at TDDFT/B2PLYP/CC-pVTZ level CD and UV spectra for individual conformers of **3e**.

Figure 16F. Experimental CD and UV spectra in acetonitrile solution (black line) and calculated Boltzmann averaged CD and UV spectra for *cis*-dihydrodiol **3e**. The rotational strenghts *R* were calculated at different levels of theory in both velocity and dipole length representations. The calculated CD and UV spectra were wavelength corrected to match the experimental long-wavelength λ_{max} values in the UV spectra.